Problem Set #7

Due monday october 28th in Class

Exercise 1: $(\star\star)$ 4 points

Obtain three consecutive integers, each having a square factor.

Solution:

The idea here is to set up the problem so that the Chinese Remainder Theorem applies. Let's call the first integer a. Note that if $2^2|a$, then a certainly has a square factor. The next integer also needs to have a square factor. The next integer also needs to have a square factor. It definitely will not have 2^2 as factor; lets assume that 3^2 is the square factor of the next integer, a + 1. Finally, we may assume that 5^2 is a factor of the last integer, a + 2. So we have:

$$2^{2}|a, 3^{2}|a+1, 5^{2}|a+2$$

Translating these divisibility conditions into the language of congruences, we get:

$$a \equiv 0 \pmod{4}, \ a \equiv -1 \pmod{9}, \ a \equiv -2 \pmod{25}$$

But now to find a suitable a, we need only solve the above system of congruences using C.R.T. We can look for a particular solution of the two first congruence of the form a=4k+9m, this lead to $9m\equiv -m\equiv 0 \bmod 4$ and $4k\equiv -5k\equiv -1\pmod 9$ then k=2 is a particular solution of the previous equation, then 8 is a particular solution of the two first equations; By C.R.T, we know that a general solution of this two equations of the form, 8+36l, for some integer l. We want this solution to be also a solution of the last equation then we get $8+36l\equiv -2\pmod {25}$, then $11l\equiv -10\pmod {25}$. Since 0 is a solution of the equation $11l\equiv -10\pmod {5}$, we can try to find a solution of the form 5j where j is an integer then we get $11j\equiv j\equiv -2\pmod {5}$ then l=-10 is a particular solution of the equation $11l\equiv -10\pmod {25}$. Finally $8+36\times (-10)=-352$ is a particular solution of a the three equations. The three consecutive integer are then -350, -351, -352.

Exercise 2: (\star) 4 points

Show by induction that if n is a positive integer, then $4^n \equiv 1 + 3n \pmod{9}$.

Solution:

For the base case $4 \equiv 1 + 3 \pmod{9}$. For the induction hypothesis, assume that $4^n \equiv 1 + 3n \pmod{9}$ for some positive integer n. Then

$$4^n = 4.4^n \equiv 4(1+3n) \equiv 4+12n \equiv 4+3n \equiv 1+3(n+1) \pmod{9}$$

Therefore $4^n \equiv 1 + 3n \pmod{9}$ for all positive integers n.

Exercise 3: (\star) 4 points

Determine which integers a, where $1 \le a \le 14$, have an inverse modulo 14, and find the inverse of each of these integers modulo 14.

Solution:

The numbers a with a inverse modulo 14 are those for which (a, 14) = 1, that are 1, 3, 5, 9, 11 and 13. The inverse of each of these integers modulo 14 is also in that list, since if $ab \equiv 1 \pmod{m}$, then both a and b have an inverse modulo m. So we see that $1^{-1} = 1, 3^{-1} = 5, 5^{-1} = 3, 9^{-1} = 11, 11^{-1} = 9$ and $13^{-1} = 13$.

Exercise 4: (\star) 4 points

Show that if p is an odd prime and a is a positive integer not divisible by p, then the congruence $x^2 \equiv a \pmod{p}$ has either no solution or exactly two incongruent solutions.

Solution:

If the congruence has no solutions, we are done, so suppose that it has at least one solution c. Then $c^2 \equiv a \pmod{p}$, so also $(-c)^2 \equiv a \pmod{p}$. if $c \equiv -c \pmod{p}$, then $2c \equiv 0 \pmod{p}$. Since p is odd, this implies that p|c. But then $a \equiv c^2 \equiv 0 \pmod{p}$. This is a contradiction since $p \nmid a$. Therefore c and -c are incongruent solutions. Now, suppose b is another solution. Then $b^2 \equiv c^2 \pmod{p}$, so $(b+c)(b-c) \equiv b^2-c^2 \equiv 0 \pmod{p}$. Then either p|(b+c) or p|(b-c), so $b \equiv \pm c \pmod{p}$. Therefore there are exactly two incongruent solutions modulo p.

Exercise 5: (\star) 4 points

- 1. Let a be an integer, u, v, n, m natural numbers. We assume that m and n are relatively prime, that $a^u \equiv 1 \mod m$ and that $a^v \equiv 1 \mod n$. Show that $a^{lcm(u,v)} \equiv 1 \mod (mn)$.
- 2. Let a be an integer relatively prime to 63. Show that $a^{36} \equiv 1 \mod 63$.
- 3. Using question (a), show that we can improve the result in (b), by proving that for any integer relatively prime to 63, $a^6 \equiv 1 \mod 63$.

Solution:

- 1. Since m and n are relatively prime, if $x \equiv 1 \mod m$ and $x \equiv 1 \mod m$. Apply this fact to $x = a^{lcm(u,v)}$. Since lcm(u,v) is a multiple of u (respectively v) the congruence $a^{lcm(u,v)} \equiv 1 \mod m$ (respectively $a^{lcm(u,v)} \equiv 1 \mod n$) follows from assumption that $a^u \equiv 1 \mod m$ (respectively $a^v \equiv 1 \mod n$).
- 2. We see $63 = 3^2 \times 7$ so that $\phi(63) = 3(3-1) \times 6 = 36$. Since a is coprime to 63 we can apply Euler's theorem and get $a^{36} \equiv 1 \mod 63$.
- 3. Again we use that $63 = 3^2 \times 7$. By Euler's theorem again, we have $a^6 \equiv 1 \mod 3^2$ and $a^6 \equiv 1 \mod 7$. Take $m = 3^2$, n = 7 and u = v = 6 in part (a) to see that $a^6 \equiv 1 \mod 63$.

 $^{^{1}(\}star) = \text{easy }, \ (\star\star) = \text{medium}, \ (\star\star\star) = \text{challenge}$